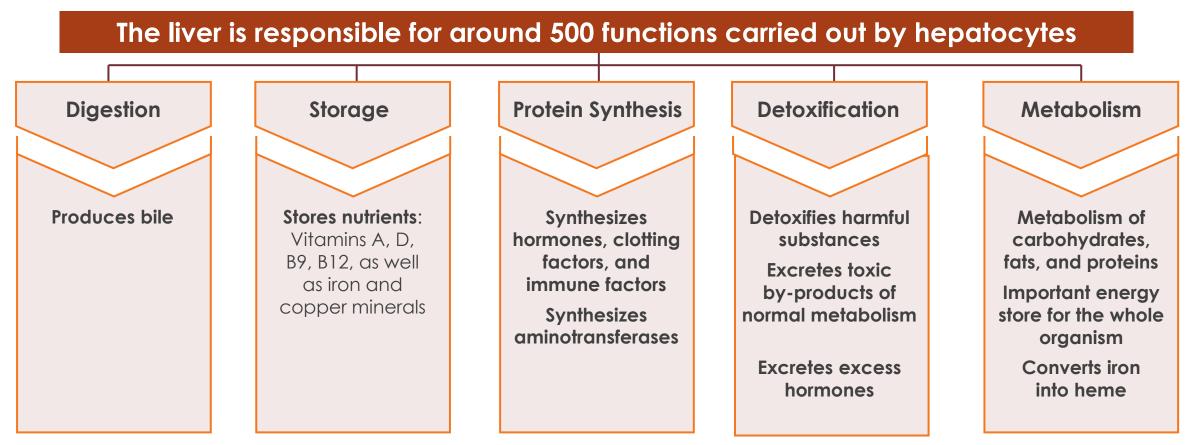
Essential phospholipids – new perspectives on the MoA

Gert Fricker Ruprecht-Karls University, Heidelberg

gert.fricker@uni-hd.de



Disclosures

• Prof. Fricker has nothing to disclose

Liver functions

Franciscus A. HCSP. Version 1. April 2015

Liver disease and NAFLD/MAFLD

An estimated 844 million people have chronic liver disease¹

NAFLD/MAFLD is one of the most common chronic liver diseases worldwide²

Ð	

However, there are currently no FDA-approved drugs for treating NAFLD/MAFLD

FDA, Food and Drug Administration; MAFLD, metabolic-associated fatty liver disease; NAFLD, non-alcoholic fatty liver disease 1. Marcellin P and Kutala BK, Liver Int 2018;38 Suppl 1:2–6; 2. Ge X, et al. BMJ Open 2020;10:e036663. <u>doi: 10.1136/bmjopen-2019-036663</u>

NAFLD/MAFLD management strategies

NAFLD/MAFLD management consists of **treating the liver disease** as well as the associated metabolic **comorbidities** such as obesity, hyperlipidaemia, insulin resistance, and type 2 diabetes mellitus¹

Non-pharmacological approaches

A personalised lifestyle intervention, focusing on diet and exercise, to lose weight^{1, 2}

Weight loss recommendations are:^{1, 2}
3–5% reduction in body weight in patients with steatosis
7–10% reduction in body weight in patients with non-alcoholic steatohepatitis (NASH)

Treatment of comorbidities

Aimed to **improve liver disease**, should be limited to biopsy-proven **NASH** and **fibrosis**¹

Management of comorbidities, for instance, with:^{1,2} Anti-diabetics Lipid-lowering agents Anti-hypertensive agents

Essential phospholipids

Adjunctive treatment with **Essential phospholipids (EPL)** has been shown to **alleviate symptoms**, inducing **histological changes** and **slowing** the **progression of liver disease**³

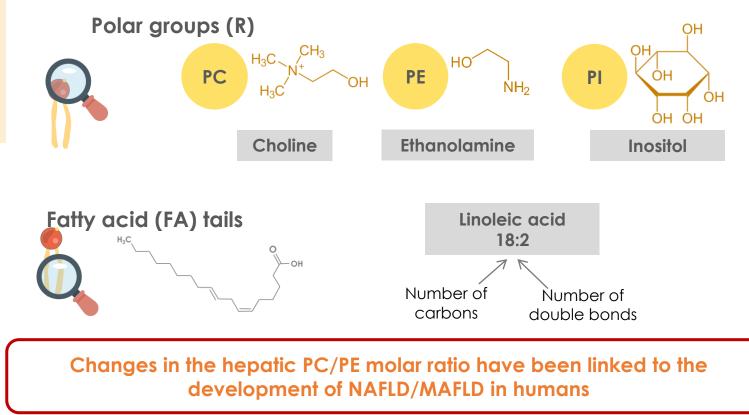
EPL treatment has been associated with:³

- Clinical improvements of steatosis
- Anti-fibrotic effects
- Anti-oxidants effects

MAFLD, metabolic-associated fatty liver disease; NAFLD, non-alcoholic fatty liver disease

1. Chalasani N, et al. Hepatology 2018;67(1):328–57; 2. Machado MV, et al. World journal of gastroenterology: WJG. 2014;20(36):12956; 3. Gundermann KJ, et al. Clin Exp Gastroenterol. 2016;9:105–117

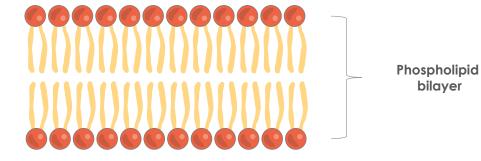
How familiar are you with the mechanism of action of phospholipids in protecting liver health?


Importance of phospholipids in cell membranes (1)

Phospholipids (PL) are essential components of cellular and sub-cellular membranes.

The most abundant PLs in mammalian tissues are:

- Phosphatidylcholine (PC)
- Phosphatidylethanolamine (PE)

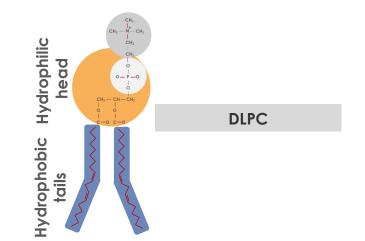


MAFLD, metabolic-associated fatty liver disease; NAFLD, non-alcoholic fatty liver disease Li Z, et al. Cell metabolism 2006;3(5):321–31

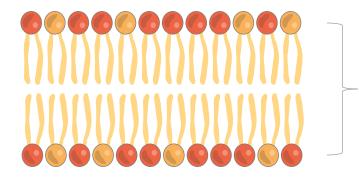
Importance of phospholipids in cell membranes (2)

- Provide cell integrity¹
- Support membrane fluidity and permeability¹
- The **PC/PE ratio** is a key regulator of membrane integrity^{1, 2}

Membranes constitute a meeting point for lipids and proteins and define the entity of cells and cytosolic organelles¹


Damage to liver cell membranes and the organelles originate from reduced phospholipid levels or altered phospholipid composition, and lead to decreased membrane fluidity³

PC, phosphatidylcholine; PE, phosphatidylethanolamine; PL, phospholipids 1. Escribá PV, et al. J Cell Mol Med. 2008;12(3):829–75; 2. Li Z, et al. Cell Metab. 2006;3(5):321–31; 3. Gundermann KJ, et al. Clin Exp Gastroenterol. 2016;9:105–117

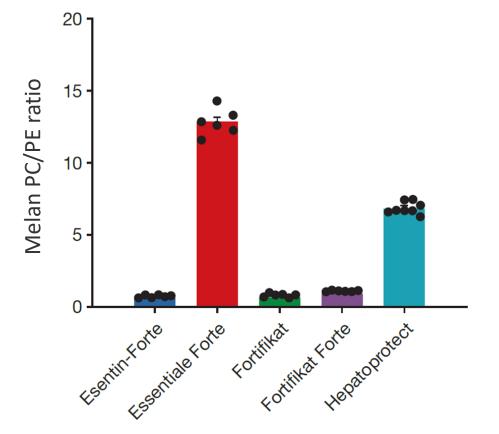


Essential phospholipids

- EPL is a highly purified extract of polyenylphosphatidylcholine (PPC) molecules from soybeans¹
- 1,2-di-linoleoyl phosphatidylcholine (DLPC) is the lead compound in the active ingredient whose phosphatidylcholine molecules have specified amounts of 72–96% of PL in EPL¹

EPL administration significantly increases its percentage in the **membranes** of **hepatocytes**, **blood corpuscles** and **pancreatic tissue**, **among other tissues**²

Membrane with Higher % of EPL


EPL have shown to exert membrane stabilising, membrane repairing and antioxidant actions that can be used to treat NAFLD/MAFLD²

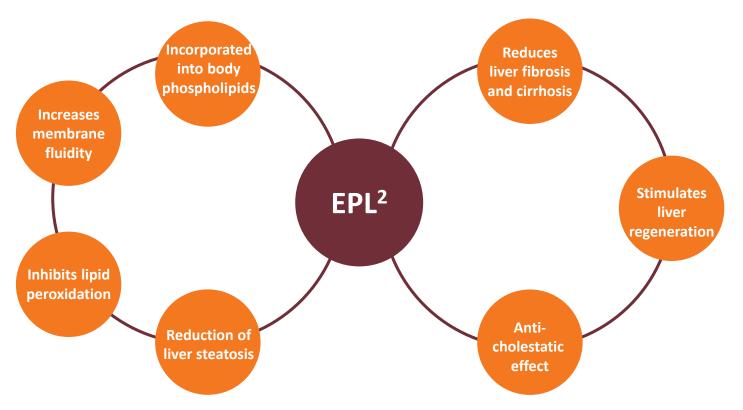
EPL, essential phospholipids; MAFLD, metabolic-associated fatty liver disease; NAFLD, non-alcoholic fatty liver disease; PL, phospholipids 1. Gundermann KJ, et al. Clin Exp Gastroenterol. 2016;9:105–117; 2. Gundermann KJ, et al. Pharm Rep 2011;63:643–59

Essentiale Forte has the highest PC:PE ratio

- Essentiale Forte had a significantly higher PC:PE (12.9 ± 2.2) ratio compared with each of the other generic PPCs investigated
- The higher PC:PE ratio observed in Essentiale Forte suggests that it may have a substantial clinical benefit in the early treatment of hepatic disorders¹
- PC 36:4, 36:3 and 36:5 with high linolenic and linolenic acid content was the most common species detected in all preparations
- A significantly higher distribution of PC species 36:4 was seen in Essentiale Forte when compared directly with each of the other PPC preparations, except Esentin Forte

Error bars represent standard error of the mean

PC, phosphatidylcholine; PE, phosphatidylethanolamine 1. Lüchtenborg C, et al. Lipids 2020;55(3):271–8



Pre-clinical evidence for MoA of EPL

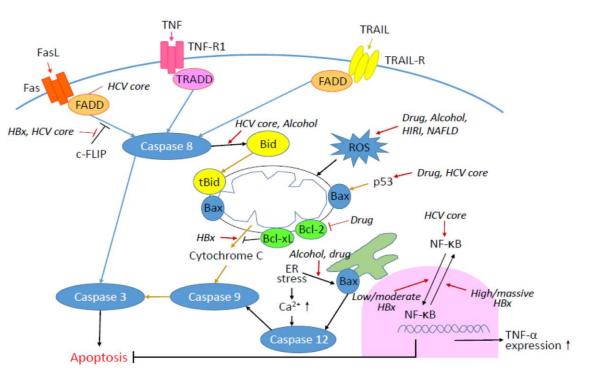
Though EPL preparations have been used in humans since 1957, very little is known about their MoA at the cellular level¹

Pre-clinical trials have provided insights into multiple MoA of EPL that are potentially involved in their hepatoprotective effects²

These potential MoA of EPL are amenable to further study in vitro

EPL, essential phospholipids; MoA, mechanism of action

1. Küllenberg D, et al. Lipids Health Dis. 2012;11(3) doi:10.1186/1476-511X-11-3; 2. Gundermann KJ, et al. Pharmacol Rep. 2011;63:643-659


Importance of apoptosis in liver cells

Programmed cell death (50-70 x 10⁹ cells/day)

- Highly regulated
- Extrinsic (outer signals) and intrinsic (inner signals) pathways

- Blue lines indicate extrinsic pathways, whereas light brown lines indicate intrinsic pathways
- The influence of virus infection, alcohol, fat, ischemia reperfusion and drug on hepatocyte apoptosis is also indicated by italics and red arrows

Apoptotic pathways in hepatocytes

Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma 2 protein; Bcl-xL, B-cell lymphoma-extra large protein; Bid, BH3 interacting-domain death agonist; Ca2+, calcium ions; C-FLIPP, cellular FADD-like interleukin-1β converting enzyme inhibitory protein; ER, endoplasmic reticulum; FADD, Fas-associated protein with death domain; FasL, Fas ligand; HBx, hepatitis B virus protein x; HCV, hepatitis C virus; HIRI, hepatic ischemia reperfusion injury; NAFLD, non-alcoholic fatty liver disease; NF-κB, Nuclear factor kappa B; ROS, reactive oxygen species; TNF, tumour necrosis factor; TRADD, TNF-R1-associated death domain protein; TRAIL, TNF-related apoptosis inducing ligand Cao L et al. J Cell Death 2016;9:19–29

Investigation into the impact of EPL, PPC & PI on hepatocyte function – an *in vitro* MoA study

The effects of **EPL** (0.1 and 0.25 mg/mL), and its constituents, **PPC** and **phosphatidylinositol** (**PI**) (both at 0.1 and 1 mg/mL) in human hepatocyte cell lines (HepG2, HepaRG, steatotic HepaRG) versus untreated cells were assessed in terms of the following parameters:

Membrane Fluidity

 Assessed by anisotropy using a fluorescent probe

Cell Apoptosis

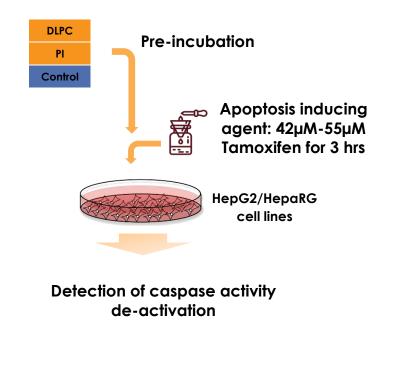
- Apoptosis was induced by tamoxifen
- Apoptosis markers caspase-3 and caspase-7 were identified using caspase-3/7 green detection reagent

Hepatocyte Transport Function

 Transporter activity was detected using fluororescent substrates specific to each of the transporters evaluated (BCRP, MRP-2, BSEP and P-GP)

BCRP, breast cancer resistance protein; BSEP, bile salt export pump; EPL, essential phospholipids; MoA, mechanism of action; MRP-2, multi-drug resistance-associated protein 2; P-GP, permeability glycoprotein; PI, phosphatidylinositol; PPC, polyenylphosphatidylcholine;

Wupperfeld D et al. Euro Fed Lipid Congress 2021 PO; manuscript in development



Investigation into the effect of EPL, PPC & PI on cell apoptosis

- Caspases are enzymes which are required for completion of various apoptotic pathways and stimulation of various cytokines¹
- The determination of hepatocyte caspase activation in the blood is a strong and independent predictor of NAFLD/NASH³

Aim: Evaluate if Caspase-3/7 become de-activated after EPL, PPC or PI treatment

Anti-apoptotic effects of EPL, PPC or PI treatment

DLPC, 1,2-di-linoleoyl phosphatidylcholine; EPL, essential phospholipids; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; PPC, polyenylphosphatidylcholine; PI, phosphatidylinositol 1. Singh S, et al. World J Gastroenterol. 2017;23(36):6549; 2. McArthur K, et al. Trends Cell Biol. 2018;28(6):475-93; 3. Wieckowska A, et al. Hepatology 2006;44(1):27–33

Investigation into the effect of EPL, PPC & PI on hepatocyte transport function

- Liver cells express various transport proteins whose function strongly depends on membrane integrity
- The main hepatocellular export proteins are:1
 - $PgP \rightarrow$ Export of xenobiotics and endogenous metabolites
 - $MRP2 \rightarrow Export$ of organic anions and drug conjgates
 - **BCRP** \rightarrow Export of xenobiotics and endogenous metabolites
 - **BSEP** \rightarrow Bile salt export
- Many of these transport proteins are altered in liver diseases²

Aim: Evaluate if some transporters can be activated by EPL, PPC or PI treatment

BCRP: Breast cancer resistance protein, BSEP: Bile salt export protein; EPL, essential phospholipids; MRP2: Multidrug resistance-associated protein 2; PgP: p-glycoprotein; PI, phosphatidylinositol; PPC, polyenylphosphatidylcholine

1. Hewitt NJ, et al. Drug metabolism reviews. 2007;39(1):159–234; 2. Thakkar N, et al. J Pharm Sci 2017;106:2282–2294

Effects of EPL on hepatocyte membrane fluidity in vitro

- Addition of **EPL (0.1 and 0.25 mg/mL)** resulted in a significant increase in membrane fluidity of HepG2 cells compared with untreated cells
- PPC and PI (0.1 and 1 mg/mL) also significantly increased membrane fluidity of HepG2 cells compared with untreated cells
- In HepaRG cells, only addition of PI 1 mg/mL conferred a significant increase in membrane fluidity compared with untreated cells
- In steatotic HepaRG cells, PI 1 mg/mL significantly increased membrane fluidity compared with untreated cells
- EPL and PPC did not have a significant impact on the membrane fluidity of HepaRG and steatotic HepaRG cells at the concentrations tested

EPL, essential phospholipids; PI, phosphatidylinositol; PPC, polyenylphosphatidylcholine; Wupperfeld D et al. Euro Fed Lipid Congress 2021 PO; manuscript in development

Anti-apoptotic effects of EPL in hepatocytes in vitro

HepG2 cells

- EPL (0.1 and 0.25 mg/mL) significantly reduced tamoxifen-induced apoptosis (P<0.001)
- **PPC** (1.0 mg/mL) **significantly reduced** tamoxifen-induced apoptosis (P<0.001)
- PI (0.1 and 1 mg/mL) significantly reduced tamoxifen-induced apoptosis (P<0.05)

HepaRG cells

• The addition of EPL (0.1 and 0.25 mg/mL), PPC (0.1 and 1.0 mg/mL) or PI (0.1 mg/mL) to tamoxifen-treated HepaRG cells resulted in a **trend for reduced rates of apoptosis**, although this was not significant

Steatotic HepaRG cells

• The addition of EPL (0.1 mg/mL), PPC (0.1 and 1.0 mg/mL) and PI (0.01 mg/mL) to tamoxifen-treated cells resulted in a **trend for reduced rates of apoptosis**, although this was not significant

EPL, essential phospholipids; PI, phosphatidylinositol; PPC, polyenylphosphatidylcholine; Wupperfeld D et al. Euro Fed Lipid Congress 2021 PO; manuscript in development

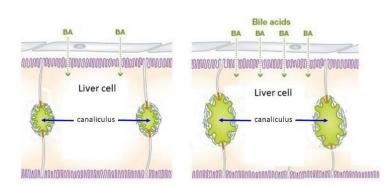
Impact of EPL on hepatocellular transport in vitro (1)

- In HepG2 cells, EPL (0.1 and 0.25 mg/mL) and PI (0.1 and 1 mg/mL) significantly increased BCRP activity compared with baseline
- EPL, PPC and PI had no significant effect on the BRCP activity in vitro in either **HepaRG** or **steatotic HepaRG cells**
- MRP-2 activity was not affected by any PL in HepG2 cells
- MRP-2 activity was significantly increased by EPL, PI (1 mg/mL,) and PPC 1 mg/mL in HepaRG cells and by PI (1 mg/mL) in steatotic HepaRG cells compared with pre-treatment levels
 - P-GP activity was significantly increased from baseline by all compounds in HepG2 cells
 - PI 1 mg/mL significantly increased P-GP activity in **HepaRG** and **steatotic HepaRG cells** from baseline

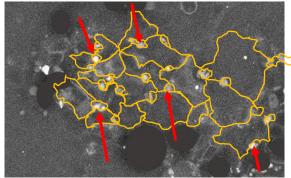
BCRP, breast cancer resistance protein; EPL, essential phospholipids; MRP-2, multi-drug resistance-associated protein 2; P-GP, permeability glycoprotein; PI, phosphatidylinositol; PL, phospholipids; PPC, polyenylphosphatidylcholine Wupperfeld D et al. Euro Fed Lipid Congress 2021 PO; manuscript in development

SANOFI 🎝

BCRP


MRP-2

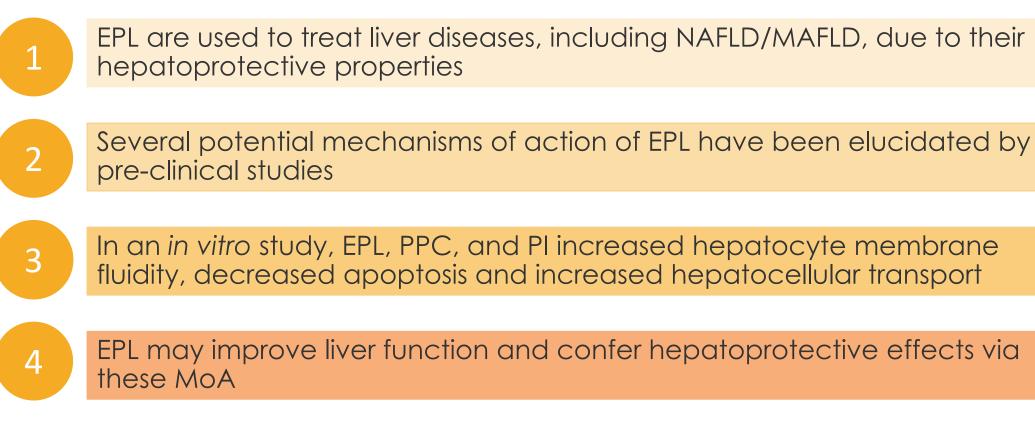
P-GP


Impact of EPL on hepatocellular transport in vitro (2)

- BSEP activity in HepG2 cells was significantly increased after treatment with EPL (0.25 mg/mL), and PPC (0.1 and 1 mg/mL) compared with before treatment (p<0.001)
- BSEP activity in steatotic HepaRG cells was significantly increased by EPL (0.25 mg/mL, p<0.05) and PPC (0.1 and 1 mg/mL, p<0.05 and p<0.0001, respectively) compared with before treatment
- EPL, PI and PPC had no effect on **HepaRG BSEP** activity

Visualisation of BSEP in untreated and PPC-treated cells

Visualisation of BSEP in EPL-treated cells



Yellow lines on figure represent individual cells; red arrows highlight examples of bile canaliculi structures with accumulated florescent substrate that presents BSEP activity. BSEP, bile salt export pump; EPL, essential phospholipids; PI, phosphatidylinositol; PPC, polyenylphosphatidylcholine Wupperfeld D et al. Euro Fed Lipid Congress 2021 PO; manuscript in development

SANOFI 🎝

BSEP

Conclusions

EPL, essential phospholipids; MAFLD, metabolic-associated fatty liver disease; MoA, mechanism of action; NAFLD, non-alcoholic fatty liver disease; PI, phosphatidylinositol; PPC, polyenylphosphatidylcholine